

 Navigation

 	
 index

 	
 next |

 	nanopipe 0.1.0 documentation

Welcome to Nanopipe documentation

[image: _images/nanopipe_example.png]

Nanopipe is a library that allows you to connect different message queue
systems (but not limited to) together. Nanopipe was built to avoid the
glue code between different types of communication protocols/channels that
is very common nowadays. An example of this is: you have an application that
is listening for messages on an AMQP broker (ie. RabbitMQ) but you also
have a Redis pub/sub source of messages and also a MQTT source from
a weird IoT device you may have. Using Nanopipe, you can connect both MQTT
and Redis to RabbitMQ without doing any glue code for that. You can also
build any kind of complex connection scheme using Nanopipe. For more information,
take a look at the Overall Architecture and Concepts.

Visit the Nanopipe Github repository [https://github.com/perone/nanopipe]
for sources, issues, etc. If you want to contribute, take a look at our
Contributing guideline.

Nanopipe features

	Open-source (Apache License)

	Written in modern C++

	Valgrind clean

	Declarative definition of the connection graph

	Uses well established event loops (libuv, etc)

	Scalable (sources/sends are threaded)

	Simple producer/consumer queues between source/sends, with very low
synchronization overhead

	Multiple source/sends share the same message memory

	Supports AMQP, MQTT, Redis, WebSockets, C++ Streams, etc

	Easy to write new source/sends

	Supports complex architectures

Note

Note that this framework is in active development and it is
still in beta release. Feel free to contribute !

Contents

	Introduction

	Overall Architecture and Concepts

	Installation
	Requirements

	Building from source

	Using the library
	How does it looks like ?

	MQTT Source/Send

	AMQP Source/Send

	Redis Source/Send

	C++ Stream Send

	WebSocket Source/Send

	Contributing

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Christian S. Perone.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nanopipe 0.1.0 documentation

Introduction

Nanopipe is a library that allows you to connect different messaging queue
systems (but not limited to) together. Nanopipe was built to avoid the
glue code between different types of communication protocols/channels that
is very common nowadays.

The development of Nanopipe is still going on and we hope to get help
from community to improve it, to implement more sources/sends. There
are still many item on our roadmap such as a textual (or yaml, etc)
DSL for describing the connection graphs and also a command-line utility
to use the library in order to avoid the use of the C++ library itself.

Visit the Nanopipe Github repository [https://github.com/perone/nanopipe]
for sources, issues, etc.

Overall Architecture and Concepts

Nanopipe has two major concepts:

Sources: the sources are producers of messages, they will connect to a
source of message and then they will deliver these messages to the sends.

Sends: the sends (or senders) will consume the messages delivered by
the sources to another (or even the same) messaging broker.

Note that you can have Sources and Sends that aren’t strictly message queues.
You can have for instance a send that will call a HTTP/HTTPS REST API upon
receiving a message from a source.

[image: _images/arch.png]

This architecture is very flexible:

	A source can have multiple sends connected, which means that all the
sends will access the same shared memory portion;

	Every source/send will run on its own thread, which means that
the receiving of messages on a source will not impact performance
on another source or send.

Internally, Nanopipe uses a producer/consumer queue with very low synchronization
requirements in order to exchange messages between sources and sends (you can also
control the size of this internal message queue). This internal message queue will
be instantiated for every source/send connection, so Nanopipe will have a different
message queue for each source/send connection, however the message delivered by
one source is shared between all its sends.

[image: _images/arch2.png]

Installation

This section describe how to install Nanopipe.

Requirements

To use Nanopipe (and also to compile it), you’ll need to install the following
requirements:

	libuv >= 1.9.1 (official site) [https://github.com/libuv/libuv]

	hiredis >= 0.13.3 (official site) [https://github.com/redis/hiredis]

	AMQP-CPP >= 2.6.2 (official site) [https://github.com/CopernicaMarketingSoftware/AMQP-CPP]

	Mosquitto >= 1.4.10 (official site) [https://github.com/eclipse/mosquitto]

	uWebSocket >= 0.10.12 (official site) [https://github.com/uWebSockets/uWebSockets]

Note

Nanopipe uses some bleeding edge version of some of the libraries above. Some
distributions (such as Ubuntu) has packages only for older versions of these
libraries, so install them using source.

Building from source

After installing the requirements, clone the Nanopipe repository:

git clone https://github.com/perone/nanopipe.git

After that, create a new directory called build and then use cmake to
build it:

cd nanopipe
mkdir build && cd build
cmake ..
make -j4

To install the library in your system, execute:

sudo make install

Using the library

This section describes how to use the library and also shows some examples
using the C++ API.

Note

Bindings for Python will be developed in near future. If you are
interested in contributing, let us know.

How does it looks like ?

Here is an example of an application using the Nanopipe library for you to
get a taste on how to declare the sources/sends using different systems.

#include <chrono>
#include <nanopipe/nanopipe.hpp>

int main(int argc, char **argv)
{
 nanopipe_init();

 AMQPSource amqp_source1("localhost", 5672, "my-queue");
 AMQPSend amqp_send1("localhost", 5672, "exch", "anykey");
 RedisSource redis_source1("localhost", 6379, "mytopic");
 MQTTSource mqtt_source1("broker.hivemq.com", 1883, "nanopipe");
 RedisSend redis_send1("localhost", 6379, "sink");
 MQTTSend mqtt_send("broker.hivemq.com", 1883, "sinkpipe");
 StreamSend stream_send1(&std::cout);

 redis_source1.addSend(&redis_send1);
 redis_source1.addSend(&mqtt_send);
 redis_source1.addSend(&stream_send1);
 redis_source1.addSend(&amqp_send1);

 mqtt_source1.addSend(&mqtt_send);
 mqtt_source1.addSend(&stream_send1);
 mqtt_source1.addSend(&redis_send1);

 amqp_source1.addSend(&stream_send1);

 NanoManager manager;
 manager.addSource(&amqp_source1);
 manager.addSource(&redis_source1);
 manager.addSource(&mqtt_source1);

 manager.addSend(&stream_send1);
 manager.addSend(&redis_send1);
 manager.addSend(&amqp_send1);
 manager.addSend(&mqtt_send);
 manager.startAll();

 std::this_thread::sleep_for(std::chrono::milliseconds(10000));

 manager.stopAll();
 manager.waitAll();

 return 0;
}

This application will execute, wait for 10 seconds and then it will stop
all source/send threads.

MQTT Source/Send

The MQTT Source and Send implemented on Nanopipe is based on Mosquitto library.
Here is an use case example where we want to get messages from a MQTT broker
and then publish them on Redis. You can test this example application using
the HiveMQ MQTT broker [http://www.hivemq.com/demos/websocket-client/]
where you can use your browser to connect and publish on their broker. You’ll
also need a Redis server instance running.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	#include <nanopipe/nanopipe.hpp>

int main(int argc, char **argv)
{
 nanopipe_init();

 // Instantiate the source and the send
 MQTTSource mqtt_source("broker.hivemq.com", 1883, "wstopic");
 RedisSend redis_send("localhost", 6379, "wstopic");

 // Connect the send into the source
 mqtt_source.addSend(&redis_send);

 // Instantiate the manager
 NanoManager manager;
 manager.addSource(&mqtt_source);
 manager.addSend(&redis_send);

 // Wait forever
 manager.startAll();
 manager.waitAll();

 return 0;
}

As you can see, the example is very simple and intuitive. We first instantiate
the source and the send and then we just connect both before starting our
manager, that will be responsible for executing the graph.

Every message published on the topic wstopic on the MQTT broker will be
sent to the Redis topic wstopic. Everything without struggling to write
glue code.

You can also use the MQTT Send to send messages to a MQTT broker instead
of using it as a source, here is an example of using it on a problem
where you want to send messages arriving on a RabbitMQ (AMQP) queue
to a MQTT broker:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	#include <nanopipe/nanopipe.hpp>

int main(int argc, char **argv)
{
 nanopipe_init();

 // Instantiate the source and the send
 AMQPSource amqp_source("localhost", 5672, "myqueue");
 MQTTSend mqtt_send("broker.hivemq.com", 1883, "mytopic");

 // Setting the MQTT QoS to 2
 mqtt_send.setQos(2);

 // Connect the send into the source
 amqp_source.addSend(&mqtt_send);

 // Instantiate the manager
 NanoManager manager;
 manager.addSource(&amqp_source);
 manager.addSend(&mqtt_send);

 // Wait forever
 manager.startAll();
 manager.waitAll();

 return 0;
}

AMQP Source/Send

TODO

Redis Source/Send

TODO

C++ Stream Send

TODO

WebSocket Source/Send

 Copyright 2016, Christian S. Perone.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nanopipe 0.1.0 documentation

Contributing

If you want to contribute, first of all, take a look at our Github repository
to check if the feature you will work isn’t already being developed. If not,
create an issue on Github to discuss what you’re going to work on and if
it is a good idea. Make sure to describe what and how you want to implement
a feature or contribution.

Once you have discussed what you want to work on, then you will want to:

	Fork the official repository.

	Clone your fork:

git clone git@github.com:<your-username>/nanopipe.git

	Make sure tests are passing for you:

make && make test

	Create a topic branch:

git checkout -b new-feature

	Add tests and code for your changes.

	Once you’re done, make sure all tests still pass:

make && make test

	Commit and push to your fork.

	Create an issue with a link to your patch.

	Sit back and enjoy.

There are other ways to help:

	Fix a bug or share your experience on issues

	Improve the documentation

	Help maintain or create new client libraries

	Improve this very website

 Copyright 2016, Christian S. Perone.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	nanopipe 0.1.0 documentation

License

Copyright 2016 Christian S. Perone

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Copyright 2016, Christian S. Perone.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	nanopipe 0.1.0 documentation

Index

 Copyright 2016, Christian S. Perone.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_images/arch2.png
‘Same memory buffer (no replication) -

‘Same memory butfer (no replication) ~

_images/nanopipe_example.png

_images/arch.png
Source

_static/down.png

search.html

 Navigation

 		
 index

 		nanopipe 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Christian S. Perone.
 Created using Sphinx 1.3.5.

_static/imgs/logored.png
nANO

connecting the modern babel

_static/imgs/arch.png
Source

_static/up.png

_static/up-pressed.png

_static/imgs/arch2.png
‘Same memory buffer (no replication) -

‘Same memory butfer (no replication) ~

_static/imgs/nanopipe_example.png

